		ADJECTIVE .	3,00012			T.	AGE	4	Jr Z
14. The equation we use for a certain type of coil is $B = \frac{\mu_0 NI}{2\pi r}$. The coil is a									
a) flat circular coil	b) toroid	c) solenoid		teresis loop	ao	bo	CØ		14.
15. The coil in Problem 14 above is wound of wire of radius 0.0013 m. Each (almost) circular turn of the coil has a 0.0200 m average radius. In using the equation above to find B within the turns, $r =$ m.									
a) 0.0013	b) 0.0200	c) 0.0213		d) not given		bo	co	dø	15.
16. Inmagnetism, adjacent atomic magnetic dipoles line up in strong parallelism in regions called									
a) Biot, Savartsb) dia, hysteresis loc	pps	c) ferro, mag d) para, mag			ao	bo	co	do	16.
17. A long straight wire has a radius of 0.002 m. We want to find B at a distance of 0.005 m from its center, that is, 0.003 m to its surface. Therefore, we should use $B =$									
m, who is to the surface. Therefore, we should use b =									
a) $\frac{\mu_0 I}{2r}$	b) $\frac{\mu_0 I}{2\pi r}$	c) $\frac{\mu_0 NI}{2\pi r}$ ($N >$	> 1)	$d) \frac{\mu_0 NI}{2r} (N > 1)$	ao	be	co	do	17.
18. In Problem 17 al	pove, r equals _	m.	gerentareratorismental entre	***************************************		RIL	L 5 x	= 7	********
a) not given	b) 0.005	c) 0.003		d) 0.002	ao	bo			
19. At the center of a coil of radius 0.013 meter and length 0.80 meter, $B = \mu_0 nI$. The current in the coil is 2.5 A. The coil has 480 turns and 600 turns per meter. The coil is a									
					L	Del L	45	E	7
a) flat circular coil	b) toroid	c) solenoid	d) hyst	teresis loop	ao	bo	(CO)	do '	19.
20. In Problem 19 al	oove, $\mu_0 = _{}$	T·m/A.							
a) 8.988×10^9	b) NIA	c) 8.854 × 10	()-12	d) $4\pi \times 10^{-7}$	ao	bo	co	do	20.
21. In Problem 19 above, $n = $									
a) 600 m ⁻¹	L) 400	c) $\frac{480 \text{ two}}{0.013 \text{ m}}$	ns	1) 0 012 - 600		1			01
· I a second	b) 480	c) 0.013 m	NT 2	d) 0.013 × 600	ao	bo	CO	do	
22. On the axis of a coil, 0.60 m from its center, $B = \frac{\mu_0 N I a^2}{2(x^2 + a^2)^{3/2}}$. The coil has 88 turns, a radius of 0.45 m, and carries a current of 2.5 A. The coil is a									
and carries a current	of 2.5 A. The c	oil is a							
a) flat circular coil	b) toroid	c) solenoid	d) hyst	teresis loop	aø	bo	co	do	22.
23. In Problem 22 above, <i>a</i> =									
a) 2.5 A	b) ± 0.60 m	c) (0.60 – 0.4	45) m	d) 0.45 m	ao	bo	co	de	23.
24. The negative charge shown causes a magnetic field by moving left (\leftarrow) . At point P , directly ahead of the									
moving charge, the r	nagnitude of the	at magnetic field		because $\phi =$	P		e.	•	-0
a) equals zero, 0°b) has its maximum,	180°	c) is undeterned) has its ma		undetermined 90°	ao	be	со	do	24.
25. The current in a	long straight wi	re is toward the top (†). Point F	is directly to the r	ight of				
the center of the wire in the plane of the paper. The direction of the magnetic field at point P is									
a) right (→) b) into	o the paper (⊗)	c) out of the paper	(O) d)	toward the top (†)	ao	bo	co	do	25.
26. A current flows to the right (\rightarrow) in an infinitesimal wire segment dl as shown. Point P									
and the wire segment are both in the plane of the paper. For this segment and point P , the unit vector \hat{r} in the law of Biot and Savart has a direction of									•
	ward the top (†			d) right (→)	ao	bo /	co	do	26.
w, 10.10(-) - 0) 10	me me top ()								,