95+7-927 A Englist

1116 = 93.0%

		- xanov	16			4 ac	M	
	GHT OF THE PAGE, FI	LL IN THE "o" OF		, FOR	EXA	MPLE	E, d⊚.	
		THAT 2π RADIANS	S = 360 DEGREES.					
 The device calle object. (That image 	ed a refracting e has a large net angular	uses two le magnification.)	enses to form a virtual	image	of the	origi	nal <i>di</i>	stant
a) virtualizer	b) interferometer	c) microscope	d) telescope	ao	bo	со	de	1.
2. In using the equ	$1ation 2y = m \lambda in this b$	lock, m is the			***************************************			************
a) mass of the way b) lateral magnific	velength c) number of ation d) number of	of Michel's son's inte of fringes moving pas	erfering meters stapoint	ao	ьо	со	dø	2.
3. An ideal approa	ached by laser light,	lig	ht has a single vacuum	wavele	ength.	······································		
a) monochromatic	b) telescope	c) Michelson	d) microscope	ao	bo	co	do	3.
4. Light moving in the air with a phas	hair $(n = 1.000)$ hits per se change upon reflection	pendicular to a waten of	r (n = 1.333) surface.	That li	ght re	flects	back	into
a) π rad	b) 0.333 rad	c) 90°	d) zero	aø	bo	CO	do	4.
	n of energy for an insula minimum gives a transm		ection maximum gives	a trans	smissi	on _m	in	
a) minimum, mini b) maximum, min		c) maximum, ma d) minimum, max		ao	bo	со	de	5.
	d the minimum, non-zer					ics) fe	or a g	iven
wavelength, we us	se $m = Q$ in the equation	on $2t = (m + \frac{1}{2})\lambda$ and	$1 m = \bot$ in the equation	on $2t =$	= <i>m</i> λ.			
a) 0, 0	b) 1, 1	c) 0, 1	d) 1, 0	ao	bo	CO	do	6.
	n an $n = 1.333$ dielectric for this reflection is		an $n = 1.000$ dielectric	mediun	n (nor	mal i	ncide	nce).
a) π rad	b) 0.333 rad	c) 90°	d) zero	ao	bo	со	do	7.
8. The angular ma	gnification is defined by	the equation						,
a) $m = -\frac{s'}{s}$	b) $M = \frac{\theta'}{\theta}$	c) $M = \frac{y'}{y}$	d) $m = \frac{\theta'}{\theta}$	ao	bo	со	do	8.
arrive at point P, v	c coherent light waves c wave 2 has traveled 666 to waves at point P is	nm farther than wave	m leave two rectangula e 1. There are no refle	r slits i	in pha The p	ise. V hase	Vhen differ	they ence
) = 3	555 (1,-1,7666 p=3)	(6-9)						
a) $\frac{2\pi}{555}$ 666 rad	b) $\frac{2\pi}{555}$ 666 degrees	c) $\frac{2\pi}{666}$ 555 rad	d) $\frac{2\pi}{666}$ 555 degrees	a⊜	bo	со	do	9.
10. When two ic interference occur	lentical waves arrive at	t a point ou	t of phase (for examp	ole), m	aximı	ım <i>co</i>	onstru	ctive
a) -2π radians	b) π radians	c) 2π degrees	d) -180°	ao	bo	co	do	10.
11. The equation	we use for a Michelson i	nterferometer is					17	
a) $2t = m \lambda$	b) $2y = m \lambda$	c) $d \sin \theta = m\lambda$	d) $2t = (m + \frac{1}{2})\lambda$	ao	be	co	do	11.
12. In this block,	me	eans having a definit	e constant phase relation	n.				

13. The index of refraction of a thin dielectric film is greater than 1. There is vacuum on both sides of the film. For a reflection maximum, we could use

d) conphasation

ao

c) telescopic

For a reflection maximum, we could use

a) $2nt = (m + \frac{1}{2})\lambda_0$ b) $2t = (m + \frac{1}{2})\lambda_0$ c) $2t = (n + \frac{1}{2})\lambda_0$ d) $2mt = (n + \frac{1}{2})\lambda_0$ do 13.

2+= (m+1) = 2+=(m+2) = 2 at (onth))

b) coherence

a) microscopic

	" × 5" CARD HER					AGE				
14. The device called a uses two lenses to form a virtual image of the original <i>nearby</i> object. (That image has a large net angular magnification.)										
a) virtualizer	b) interferometer	c) microscope	d) telescope	ao	bo	CO	do	14.		
15. You wish to use a magnifier as discussed in our textbook to give a lateral magnification of infinity and an angular magnification of 3.2. It should be a lens of focal length cm.										
a) zoom, 3.2(25)	b) diverging, $\frac{3.2}{25}$	c) converging, $\frac{25}{3.2}$	d) flat, ∞	ao	bo	CO	do	15.		
16. In $2t = m \lambda$, m i	S									
	cation b) a whole nu									
17. Light of vacuum wavelength 543 nm is incident normally on a thin horizontal dielectric film. The light's wavelength is 357 nm in the dielectric medium above the thin film, 388 nm in the thin film itself, and 408 nm in										
the dielectric medium	below the thin film. In	7				nm.				
a) 357	b) 543	c) 388	d) 408	ao	bo	CO	do	17.		
18. In Problem 17 above, the index of refraction of the film equals a) $\frac{543}{357}$ b) exactly one c) $\frac{543}{388}$ d) $\frac{543}{408}$ ao bo co do 18.										
a) $\frac{543}{357}$	b) exactly one	c) $\frac{543}{388}$	d) $\frac{543}{408}$	ao	bo	CO	do	18.		
	ctive interference occu									
a) in phase b) i	incoherent c) perp	endicular d) π rad	lians out of phase	ao	bo	co	de	19.		
20. Coherent laser light is split into two beams. The two beams come back together at point P , with a path length of 106.3 wavelengths for beam 2 and 84.3 wavelengths for beam 1. The beams have a phase difference at point P due solely to their path difference. That phase difference is degrees.										
) 360(106.3 – 84.3)	c) $\frac{2\pi}{\lambda}$ (106.3 – 84.3)	d) $\frac{360}{106.3 - 84.3}$	ao	bo	со	do	20.		
21. Using a Michelso	on interferometer with	monochromatic light, y	ou move the movab	le miri	ror 89	.0 µm	and	321		
dark fringes move pa	ast a point in the interfe	rence pattern. Therefor	re, the light's wavele	ngth is			_ µn	1.		
a) $\frac{321(89.0)}{2}$	b) 2(321)(89.0)	c) $\frac{89.0}{2(321)}$	d) $\frac{2(89.0)}{321}$	ao			de			
22. A magnifier has an angular magnification of 3.2. The angle subtended at your eye by the object is 5.5° when the object is 25 cm from your eye and the magnifier is not present. You then use the magnifier as discussed in this block (you place the object in the magnifier's focal plane). Then the angle subtended at your eye by the image seen through the magnifier is										
a) $\frac{25}{3.2}$ cm	b) $\frac{5.5^{\circ}}{3.2}$	c) 3.2 × 5.5°	d) 3.2 x 25 rad	ao	be (co	do	22.		
	se the equation $2t = n$									
dielectrics). Therefore	re, we must have	phase shift(s) of π	rad upon reflection	from th	ne film	boun	ıdarie	es.		
a) 2 (not 0 or 1)	b) 1 (not 0 or 2)	c) 0 or 2 (not 1)	d) 0 (not 1 or 2)	ao	bo	со	do	23.		
24. The center-to-center distance between two rectangular slits is 2.53 wavelengths. The largest value of the sine function is 1. We find the largest possible angle for the center of a bright fringe of that wavelength using $m = 1$. $ \sin \theta = \left(\frac{m}{2}\right) + \left(\frac{m}{2}\right)$										
a) 2	b) 2.53	c) 3	d) 1		bo		do	24.		
25. Consider two rectangular slits coherent emitting coherent monochromatic light rays in phase. For maximum constructive interference, our equation says their path difference should equal a whole number of wavelengths. Thus we showed in class yesterday that their phase difference when they arrive at a point on a distant screen equals (in terms of their angle with the normal.) a) $\frac{\lambda \phi}{2\pi}$ b) $2\pi\theta$ c) $\frac{2\pi}{\lambda} d \sin\theta$ d) $m \sin\theta$ ao bo co de 25.										
$\lambda \phi$	b) 2 # 9 = ()	$c)\frac{2\pi}{d\sin\theta}$	d) m sin A	20	ho /	CO	de	25.		
a) $\frac{\lambda \phi}{2\pi}$	Chatian of a divisit of	λ http://doi.org/10.1000/	n 1 Thorn is many	n on L	oth a	des	f the	film		
26. The index of ref For a reflection min	raction of a thin dielection, we could use	1 - A.	In 1. There is vacuum $2\ell = n\lambda$	n on c	oui Si	ues O	uie	111111.		
a) $2nt = m\lambda_0$	b) $2t = m\lambda_0$	c) $2t = n\lambda_0$	d) $2mt = n\lambda_0$	ao	bo	со	do	26.		