
PHYS 242 BLOCK 2 NOTES
Sections 22.2 to 22.5

The electric flux ΦE through a surface is related to electric field lines. Although we can draw as many
electric field lines as we want to represent the electric field, electric flux has a definite value.
Special case 1. If E →  is uniform (that is, constant in magnitude and direction) and a flat area A is perpendicular to

E → as shown in Fig. 22.6a, then ΦE = EA (in 
N·m2

C  ).

Special case 2. If E →  is uniform over a flat area A, with an angle φ shown in Fig. 22.6b, then ΦE = EA⊥, where
 A⊥ = A cos φ. That is, ΦE = EA cos φ  . Using E cos φ = E⊥, ΦE = E⊥A  . Also, using

EA cos φ = E→ ·A → ,  ΦE = E
→·A→  . These are Eqs. (22.1), (22.2), and (22.3).

That area vector A →  has a magnitude A (in m2) and a direction normal (that is, perpendicular) to the surface.
For closed surfaces, A → and dA →  are always outwardly normal to the surface (SKILL 1).

E⊥ is the component of E→  perpendicular to the surface (and parallel to A→  or dA → ).
φ is the angle between the directions of the vectors E→  and A→  or dA → .

From ΦE = EA cos φ, we see the electric flux ΦE can be 


 + (90˚ > φ ≥ 0)—electric field out  

0 (φ = 90˚)                     
– (180˚ ≥ φ > 90˚)—electric field in

(SKILL 2) .

In general, E and/or φ may not be constant over the area, so dΦE = E cos φ dA gives Eq. (22.5), which is

the mathematical definition of electric flux (TERM 1): ΦE ≡ ∫E cos φ dA = ∫E⊥ dA = ∫E→·dA→  .

Cover up the solutions and carefully work Examples 22.1, 22.2, and 22.3.

In Section 22.3, our text uses E = 
1

4πε0 
|q|
r2  to find the non-integral form of Gauss’s law (TERM 2) (in

vacuum ≈ air): ΦE = 
Qencl
ε0  , as well as the three integral forms of Gauss’s law:

∫o E →·d A → = 
Qencl
ε0   and  ∫oE cos φ dA = 

Qencl
ε0  and  ∫oE⊥ dA  = 

Qencl
ε0  . (All forms include “=  

Qencl
ε0   ”.)

Recall that ε0 = 8.854 × 10–12 
C2

N·m2  .

The symbol ∫o  means to integrate over a closed surface, so the electric flux ΦE  in Gauss’s law is the net (that is,
total) electric flux through that closed surface, and Qencl is the net (that is, total) charge enclosed by that surface.

A Gaussian surface is a closed mathematical surface (TERM 3). It does not have to coincide with any
material surface.
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From ΦE = 
Qencl
ε0  , we see that Qencl = 


 + gives net electric flux out 

0 gives zero net electric flux
– gives net electric flux in  

(SKILL 2) .

Cover up the solution and carefully work Example 22.4.

F0
→  = q0E → tells us that E = 0 (in the material of a conductor with free charges at rest overall)  .

Section 22.4 explains how this E = 0 condition tells us that all excess charge is found on the surface of a
solid conductor that has its free charges at rest overall (that is, under electrostatic conditions).

For uniformly distributed charges: the |charge| per volume is ρ (rho), ρ ≡ 
|q|
V  (in C/m3) , the |charge|

per area is σ (sigma), σ ≡ 
|q|
A  (in C/m2) , and the |charge| per length is λ (lambda), λ ≡ 

|q|
L  (in C/m) , where |q| is

the absolute value of the charge (in C) spread uniformly over the volume V (in m3), area A (in m2), and/or length L
(in m).

Some Applications of Gauss’s law:
1. Finding electric fields from given symmetric charge distributions:
a) Spherical symmetry: Given a sphere of uniform positive charge density ρ and radius R.

1) Use an integral form of Gauss’s law, for example, ∫o E cos φ dA = 
Qencl
ε0   .

2) Choose a symmetric Gaussian surface: in this case, the surface of a concentric (same center) sphere of radius r.
3) E → is away from the enclosed positive charge and so is radially outward while dA → is always outwardly normal
and so is also radially outward. Therefore, the two vectors E → and dA → are parallel , so φ = 0 and cos φ = cos 0 = 1.
Thus, ∫o E cos φ dA = ∫o E (1)dA.

4) E is constant by symmetry, so we can take it out of the integral: ∫o E (1)dA = E ∫o dA.

5) Then ∫o dA = Aspherical surface = 4πr2 so that the left side of Gauss’s law (∫o E cos φ dA) equals E4πr2. Therefore,

E4πr2 = 
Qencl
ε0   solves to E  = 

1
4πε0 

Qencl
r2  (telling us that outside of a spherically symmetric charge distribution,  

the electric field looks like E = 
1

4πε0 
|q|
r2  —as if all the charge were concentrated at the sphere’s center).

6) For r ≤ R (inside the sphere of charge), there is charge throughout the entire volume of the Gaussian surface (of

radius r). Thus, Qencl = ρVencl = ρ 43 πr3, so E = 
1

4πε0 
Qencl

r2   becomes E = 
1

4πε0 
ρ 43πr3

r2   or E = 
ρr
3ε0  (r ≤ R ) .

7) For r ≥ R (outside the sphere of charge), there is charge only from r = 0 to r = R (the charge radius). Thus,

Qencl = ρVencl = ρ 43 πR3, so E = 
1

4πε0 
Qencl

r2   becomes E = 
1

4πε0 
ρ 43πR3

r2   or E = 
ρR3

3ε0r2
 (r ≥ R ) .

The magnitude of E has the shape of Fig. 22.22.
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b) Cylindrical symmetry: Given a very long rod of charge of radius R, much larger length L, volume charge
density ρ, and linear charge density λ.

1) Use an integral form of Gauss’s law, for example, ∫o E cos φ dA = 
Qencl
ε0   .

2) Choose a symmetric Gaussian surface: in this case, the surface of a coaxial (same axis) cylinder of radius r and
length l (l << L).
3) Break the integral into three parts: ∫o E cos φ dA  = ⌡⌠

left end
E cos φ dA  + ⌡⌠

side
E cos φ dA  + ⌡⌠

right end
E cos φ dA .

4) Over both ends: E → is away from the enclosed + charge and so is radially outward. dA → is always outwardly
normal and so is parallel to the axis of the coaxial cylinder. Therefore, the two vectors E → and dA → are perpendicular
, so φ = 90˚ and cos φ = cos 90˚ = 0. Thus, ⌡⌠

left end
E cos φ dA  = 0 = ⌡⌠

right end
E cos φ dA . (That is, there is no electric

flux ΦE through the ends.)

5) Over the side: E → is away from the enclosed + charge and so is radially outward. dA → is always outwardly
normal and so is also radially outward. Therefore, the two vectors E → and dA → are parallel , so φ = 0 and cos φ =
cos 0 = 1. Thus, ⌡⌠

side
E cos φ dA  = ⌡⌠

side
E(1)dA .

6) E is constant by symmetry, so we can take it out of the integral: ⌡⌠
side

E(1)dA  = E ⌡⌠

side
dA .

7) Then ⌡⌠
side

dA  = Aside = 2πrl. Thus, the left side of Gauss’s law (∫o E cos φ dA ) equals 0 + E2πrl + 0 = E2πrl.

8) For r ≥ R (outside the cylindrical charge distribution), Qencl = ρπR2l or λl.

9) Thus, ∫o E cos φ dA = 
Qencl
ε0   becomes E2πrl = 

ρπR2l or λl
ε0   . Solving, E = 

ρR2

2ε0r or 
λ

2πε0r  (r ≥ R ) .

10) For r ≤ R (inside the cylindrical charge distribution), Qencl = ρ times what?, so E = what?

c) Flat symmetry: Given a very large flat horizontal conductor with its free charges at rest overall. It has a
uniform negative surface charge density –σ on its bottom surface and no other excess charge.

1) Use an integral form of Gauss’s law, for example, ∫o E cos φ dA = 
Qencl
ε0   .

2) Choose a symmetric Gaussian surface: in this case, the surface of a cylinder with its vertical axis perpendicular

to the bottom surface of the conductor. The top and part of the side of the Gaussian cylinder are in the material of

the conductor. The bottom of the Gaussian cylinder is below the flat conductor’s bottom surface and has area A.
3) Break the integral into three parts: ∫o E cos φ dA  = ⌡⌠

top
E cos φ dA  + ⌡⌠

side
E cos φ dA  + ⌡⌠

bottom
E cos φ dA .

4) In the material of a conductor with free charges at rest overall, E = 0, so ⌡⌠
top

E cos φ dA  = ⌡⌠
top

0 cos φ dA  = 0.

(That is, there is no electric flux ΦE through the top.)
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5) Part of the side is in the conductor where E = 0. The rest of the side is outside the conductor where E → is toward
the enclosed – charge, making E → parallel to the side. dA → is always outwardly normal and so is perpendicular to the
side. Therefore, the two vectors E → and dA → are perpendicular to one another , so cos φ = cos 90˚ = 0 so ⌡⌠

side
E cos φ dA

 = ⌡⌠
side

0 dA  = 0. (That is, there is no electric flux ΦE through the side.)

6) Over the bottom of the Gaussian surface: E → is toward the enclosed – charge and so is toward the bottom surface
of the conductor. dA → is always outwardly normal and so is away from the bottom surface of the conductor.
Therefore, the two vectors E → and dA → are antiparallel (opposite) to one another , so φ = 180˚ and cos φ = cos 180˚ =
–1. Thus, ⌡⌠

bottom
E cos φ dA  = ⌡⌠

bottom
E(–1)dA .

7) E is constant by symmetry, so we can take it out of the integral: ⌡⌠

bottom
E(–1)dA  = –E ⌡⌠

bottom
dA .

8) Then ⌡⌠

bottom
dA  = A. Thus, the left side of Gauss’s law (∫o E cos φ dA ) equals 0 + 0 + (–EA) = –EA.

9) Since Qencl = –σA, ∫o E cos φ dA = 
Qencl
ε0   becomes –EA =  

–σA
ε0  , or E = 

σ
ε0  .

2. Finding a charge distribution from a known electric field:
Figure 22.23c shows the cross section of a conductor (with its free charges at rest overall). There is a cavity in the
conductor that contains a charge q that is insulated from the conductor. (The charge q is shown as plus, but it could

just as well be minus.) In the material of the conductor, E = 0, so Gauss’s law (∫o E → ·d A →  = 
Qencl
ε0  ) becomes

0 = 
Qencl
ε0  . Therefore, Qencl = 0 (and ΦE  = 0) for all Gaussian surfaces that are completely in the material of the

conductor.

Since Qencl = 0, the excess charge qcw on the cavity wall, (that is, the inner surface of the conductor) is
qcw = –q   and the excess charge is zero in the bulk of the material of the conductor (qbulk = 0). Therefore,

any excess charge is only the conductor’s surfaces—the cavity wall and the conductor’s outer surface:
qtotal on conductor = qcw + qouter surface  (SKILL 7) .

For example, suppose that the total excess charge on the conductor is –9 nC and there is +6 nC on the
cavity wall. (That is, qtotal on conductor = –9 nC and qcw = +6 nC.)

First, the excess charge in the bulk of the conductor’s material is zero.

Second, qcw = –q tells us the insulated charge in the cavity must be q = –6 nC.

Third, qtotal on conductor = qcw + qouter surface becomes –9 nC = +6 nC + qouter surface, so the charge on the outer

surface must be qouter surface = –15 nC. Now try Conceptual Example 22.11, covering up its solution.
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