
PHYS 242 BLOCK 10 NOTES
Sections 16.8, 16.9, 32.1 to 32.5

Restricted to one dimension, no wind, and a source emitting a sound of single frequency fS, we now
consider the Doppler effect for sound: When a source S and a listener L have a non-zero relative speed, the
listener hears a frequency fL > fS if L and S are moving closer together or fL < fS if L and S are moving apart. The
frequencies fL and fS are both in Hz.

Note that when the relative speed is zero, fL = fS.

In order to write just one equation for nine possibilities, we choose the direction from listener to source
as positive. Equation (16.27), its use in Example 16.14b, and its repetition on page 538 are all wrong: because the
minus signs in the algebraic equations should be plus signs. However, υS itself is negative for all “in front”
cases, so the numerator in the Example 16.14b’s first numerical solution is 340 m/s + (–30 m/s).

The other equations are correct, including fL = 
υ + υL
υ + υS fS  , where fL, fS, and υ (the speed of sound) are

always positive. All three υ’s must have the same unit (
m
s   in SI). In this equation, υL is the velocity component of

the listener and υS is the velocity component of the source: υL and υS  are positive when directed from
listener to source; υL and υS  are negative when directed from source to listener. (The word “component”
is often left out in the text.)

Please use the DOPPLER EFFECT SIGNS TUTORIAL on http://archive-staff.ncat.edu/gpii/.

Realizing that “velocity” should be “velocity component” and “velocities” should be “velocity
components”, cover up the solutions and carefully work Examples 16.15 to 16.18. The driver of the police car has
zero speed relative to the siren, so that driver hears 300 Hz directly from the siren in all four examples.

If the source is moving faster than the speed of sound (if |υS| > υ), that supersonic source produces a
large-amplitude wave crest—a shock wave (or shock waves—see Fig. 16.35c and its caption). When |υS| and υ
are constant and the source is moving in a straight line, in three dimensions this shock wave is cone shaped. This
shock-wave cone makes an angle α with the straight-line path of a supersonic object.

Our text derives an equation we change to sin α = 
υ

|υS|  , where the speed of sound υ and the speed of the

supersonic source |υS| are both positive and have the same unit (
m
s   in SI).

The reciprocal of the right side of this equation, 
|υS|
υ   , is called the Mach number, sin α = 

1
the Mach number  .

Changing all “υS” to “|υS|”, cover up the solution and carefully work Example 16.19.
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In Chapter 32, we begin adding electromagnetism concepts to wave concepts to describe sinusoidal
electromagnetic waves. Electric fields and magnetic fields “wave” (that is, oscillate in space and time) in an
electromagnetic wave, often called an em wave.

Maxwell’s equations tell us that accelerated charges produce electromagnetic waves.

Figure 32.4 illustrates the electromagnetic spectrum. In order of increasing frequency (that is, decreasing
wavelength), the electromagnetic spectrum has bands of radio waves, microwaves, infrared, visible light [λ0 = 700
nm (red) to λ0 = 400 nm (violet)], ultraviolet, x rays, and gamma rays.

In a plane wave, the oscillations all have the same phase in any geometric plane perpendicular to the
wave’s velocity.

An em wave has the property of polarization—that is, the direction of its electric fieldE →  is not arbitrary.
(This “polarization” is not the electric dipole moment per volume vector of Block 4.) Specifically, in a linearly-
polarized em wave, all electric fields E →  oscillate parallel to the same line and all magnetic fieldsB →  oscillate
parallel to a perpendicular line. That is, E →  and B → are perpendicular for this type of em wave.

Applying Maxwell’s equations to an em wave in a dielectric gives E = υB  , where E (in 
V
m  or 

N
C ) is the

magnitude of the em wave’s electric field at some position and time and B (in T) is the magnitude of the em wave’s
magnetic field at the same position and the same time. In vacuum, υ ≡ c. So, in vacuum, E = υB  becomes E = cB

. The so-called “speed of light” c is defined to equal exactly 299,792,458 m/s: c ≈ 3.00 × 108 m/s.
In terms of the amplitudes of the two fields, Emax and Bmax, two more special cases of E  = υB are

Emax = υBmax   and Emax = cBmax  .

Maxwell’s equations also give υ = 
1
εµ
 = 

1
KKm

 
1
ε0µ0

 = 
c

KKm
  in a dielectric. In vacuum, ε ≡ ε0, µ ≡

µ0, K = 1, Km = 1, and υ ≡ c, so c = 
1
ε0µ0

  is the special case included in the previous box. The values in air are

approximately equal to those in vacuum.

In a dielectric, ε = Kε0 and µ = Kmµ0. Also, Km = 1 and µ = µ0 for nonmagnetic materials and µ ≈ µ0 and
Km ≈ 1 near and above room temperature for diamagnetic and paramagnetic materials.

ε is the permittivity (in 
F
m ) of the dielectric; ε0 is the permittivity (in 

F
m ) of vacuum (ε0 = 8.854 × 10–12 Fm ).

µ is the permeability (in 
T·m
A  ) of the dielectric; µ0 is the permeability (in 

T·m
A  ) of vacuum (µ0 ≡ 4π × 10–7 

T·m
A  ).

K is the dielectric constant (no unit) of the dielectric and Km is its magnetic counterpart (no unit).
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You should be able to use two of the boxed equations on the previous page to show that, for an em wave,

the energy density of the magnetic field uB = 
B2
2µ  equals the energy density of the electric field uE = 12  εE2.

Cover up the solution and carefully work Example 32.2.

We now define the Poynting vector S →  by the vector equation S → ≡ 
1
µE 
→ ×  B →  . Therefore, in the special

case of vacuum (≈ air), S → = 
1
µ0E 

→ ×  B → . Note the magnitude ofE → ×  B → is EB sin 90˚ = EB. 

The magnitude of S →  is in 
W
m2  . The direction of S →  is the direction of the em wave’s velocity. Thus

the direction the wave is moving is the direction ofE →  × B → , that is, perpendicular to both E →  andB → .
In Example 32.1, you should be able to find the magnetic field amplitude and use the right-hand rule with

Fig. 32.15 to show the three perpendicular directions (of the two fields and the wave velocity) are consistent.

For sinusoidal em waves, the intensity I is the average magnitude of the Poynting vector Sav, giving

(in a dielectric) I = Sav = 
EmaxBmax

2µ  = 
Emax2

2µυ  = 
1
2 

ε
µ Emax2 = 12 ευEmax2  . In the special case of vacuum (≈ air),

I = Sav = 
EmaxBmax

2µ0  = 
Emax2

2µ0c  = 
1
2 

ε0
µ0 Emax2 = 12 ε0cEmax2  .

Recall the intensity I is the average power transmitted by the wave per perpendicular area and is thus in 
W
m2 .

Cover up the solution and carefully work Example 32.4.

The radiation pressure prad (in Pa = pascal) is the average pressure exerted by an em wave. For an em

wave that hits normal (perpendicular) to a surface in vacuum (≈ air), prad = 
Sav
c  = 

I
c for complete absorption   and

prad = 
2Sav

c  = 
2I
c  for complete reflection  . Recall that pressure is the perpendicular force per area.

Oppositely-directed em waves of the same amplitude, frequency, wavelength, and polarization add together
to produce standing waves. For standing em waves between perfectly reflecting parallel walls a distance L (in m)
apart, the allowed frequencies and wavelengths are fn (in Hz) and λn (in m), similar to standing waves on a string

… (fixed at both ends) and an open pipe. In a dielectric, fn = 
υ
λn = n 

υ
2L (n = 1, 2, 3, 4, …)  . In the special case of

vacuum (≈ air) between the walls, υ ≡ c, so fn = 
c
λn = n 

c
2L (n = 1, 2, 3, 4, …)  .

Try Example 32.7, realizing that Eq. (32.38) can be obtained from Eq. (32.39).
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